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Abstract

Solidification of an aqueous ammonium chloride (NH4CI-H,O) solution inside a two-dimensional cavity is nu-
merically investigated using a continuum mixture mathematical model. The mushy region where solid and liquid phases
co-exist is considered a non-Newtonian fluid below a critical solid fraction, and a porous medium thereafter. This
critical solid fraction is chosen as that corresponding to the coherency point, where a solid skeleton begins to form. The
numerical results show that the solidification of a hypereutectic NH,Cl-H,O solution is mainly characterized by the
rejection of solute at the mushy region and double diffusive convection induced by the opposing solutal and thermal
buoyancy forces. The mathematical model agrees satisfactorily with the available experimental and numerical

data. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

Phase transformation in non-eutectic binary alloys
occurs over a temperature range rather than the distinct
temperatures in pure systems. Therefore a ‘“‘mushy
region” in which solid and liquid phase can coexist
forms in such systems. Solute depletion or enrichment
may occur in this region due to the difference in the
solubility of the solute constituents in the liquid and
solid phases. The flow generated by thermal and con-
centration gradients drives the fluid through and from
the mushy region leading to segregation in the system.
Considering that most commercial metallic products are
in the form of alloys of two or more constituents, the
control of flow in the mushy region is critical to im-
proving the quality of the final cast product.

There are mainly three approaches to modeling of
solidification of binary alloys. The first approach con-
siders the system as a two-phase mixture of liquid and
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solid and separate transport equations are solved for both
phases. Beckermann and co-workers [1-4] developed
sophisticated two-phase models and applied to a range of
solidification problems. The second approach considers
solidification domain as consisting of three separate
regions and solves separate transport equations that are
valid in these regions with appropriate boundary condi-
tions between them [5-8]. The third method is the single
domain which is based on the solution of a single set of
conservation equations and eliminates consideration of
separate liquid, solid and mushy regions.

The governing equations in the single domain model
or continuum mixture model employed here are very
similar to standard single phase flow equations and
therefore, are easier to compute than the complete two-
phase flow equations. The single domain model also
eliminates the need to prescribe complex interfacial
boundary conditions and explicit tracking of internal
boundaries between the solid, liquid and mushy regions
as required in the multidomain method.

Considering two-phase flow equations, Bennon and
Incropera [9] developed a continuum equation which
accounts for liquid, solid and liquid + solid regions
during solidification. The specific nature of the regions
are included in the model through appropriate source
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Nomenclature

Cp specific heat

C species concentration
D diffusion coefficient

f mass fraction

h enthalpy

H height of cavity

K thermal conductivity
Ky permeability coefficient
ky equilibrium partition ratio
P static pressure

temperature

eutectic temperature

melting temperature

velocity component in x direction
velocity component in y direction

c:;(ﬁ»\]

Greek symbols

o thermal diffusivity

Pr thermal expansion coefficient
Bs solutal expansion coefficient
u dynamic viscosity

o density

terms. The solid fraction is calculated from the phase
diagram assuming local thermodynamic equilibrium.

Christienson and Incropera [10] experimentally
studied solidification of aqueous NH,CI-H,O solution
with a variety of initial solute concentrations. For a
hypereutectic solution, it was found that the solute-de-
ficient fluid ejected from the mushy region develops an
opposing double diffusive flow. On the other hand, sol-
utal buoyancy forces aid thermal buoyancy forces in
hypoeutectic solutions. In a subsequent study, Chris-
tenson et al. [11] applied a continuum model and com-
pared with their experimental data. Although this model
successfully predicted the basic solidification phenom-
ena, the extent of the solid and mushy regions were
underestimated in the study.

Yoo and Viskanta [12] considered anisotropic per-
meability of the mushy zone, instead of the uniform
permeability assumed in many studies. It was shown
that permeability significantly affects the solute distri-
bution and the extent of the mushy region. Specifically, a
higher permeability in the vertical direction produces
higher solute concentration at the top of the cavity. This
reduces the liquid temperature and results in significant
remelting at the solidification front.

Rady and Nada [13] extended the continuum mixture
model to study the free surface effects in solidification of
hypereutectic and hypoeutectic ammonium chloride
solutions. It was found that free surface effect increases
macrosegration in the solidified product, especially for
hypoeutectic solutions.

The theoretical models cited above consider the
mushy region as a porous medium and apply the Darcy
law for the fluid flow. In effect, these models assume that
a solid skeleton forms as soon as the solidification is
initiated. They are therefore inadequate to represent free
floating grain structures, rheocasting, compocasting and
DC casting systems. The transport of free equiaxed
grains affects the extent of the equiaxed zone and
columnar-to-dendritic transition. Sedimentation of
floating particles is also largely responsible for structural

inhomogeneity in solidified parts. Therefore, treating the
full mushy region as a non-moving porous medium
physically may not be appropriate at least until the co-
herency point where dendrites start to impinge and form
a solid skeleton during solidification [14,15]. Using
rheological methods, Amberg et al. [15] determined the
coherency points of several alloys, and found that this
value changes between 9% and 30% solid fraction de-
pending on the alloy. It was also shown that near the
coherency point, there is a sharp increase in torque
measurement indicating formation of a solid structure.
The mushy region permeability measurements of
Murakami and Okamato [16] and Poirier and Ocansey
[17] also support the existence of coherency point in
solidifying alloy systems.

In a recent study, Ilegbusi and Mat [18] developed a
new hybrid model, which addresses this behavior of the
mushy region. The model basically considers the mushy
region as a non-Newtonian semi-solid slurry below a
critical solid fraction (f;) and a porous medium there-
after. The new model was shown to perform as satis-
factorily as the conventional models. This study did not,
however, account for species transfer and hence, did not
predict macrosegregation effects and other important
phenomena such as double diffusive flow, and remelting
occurring during solidification.

The objective of this study is to extend the work of
Ilegbusi and Mat [18] to include species transport and
apply it to solidification of a binary alloy (NH,CIl-H,O)
in a two-dimensional cavity. Flow in the system con-
sidered is driven mainly by the competing effects of the
solutal and thermal buoyancy forces. A continuum
model is employed, which is based on a single set of
conservation equations that is applicable to the solid,
mushy and liquid regions. The continuum approach
eliminates the need to prescribe complex interfacial
boundary conditions. Solutions are thus subject only to
conditions imposed at external boundaries and are
capable of predicting important features such as irreg-
ular interface morphology and local remelting.
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The detailed formulation of the problem is described
in the following section (Section 2). Next, the results are
presented and discussed in a subsequent section (Section
3). Finally, the major findings of the study are sum-
marized in a concluding section (Section 4).

2. Mathematical formulation

Consideration is given to solidification of an aqueous
ammonium alloy (NH4Cl-H,O0) in a rectangular cavity
shown in Fig. 1. This system mirrors the experimental
study of Christenson and Incorpera [10] to allow direct
comparison of the computed results. Initially, the cavity
is filled with a superheated NH4CIl-H,O solution with an
initial composition of C;,. The solidification is induced
by suddenly changing the temperature of the left wall to
Teora at t = 0. The right and left wall temperatures are
kept at constant temperatures 7.,q and Tjr, respectively,
while the bottom and top walls are assumed to be per-
fectly insulated.

The continuum model employed to represent the
solidification in the cavity is valid in the fully solid,
mushy and fully liquid regions. It thus precludes explicit
consideration of the phase boundaries.

Within this framework, the equations governing the
solidification of a binary alloy in a two-dimensional
cavity may be expressed in Cartesian coordinates thus:

Continuity:
0
—(p)+ V- (p¥) =0, (1)
Insulated wall
4
g
' ‘_
Tml Thol

// //)[ /

Insulated Wall

Fig. 1. Schematic sketch of the solidification system considered.

x-Momentum:

0 oP p

y-Momentum:

0 oP
—(pv)+ V- (pW)=——+ V- (WPEVU) +8, + Sp.

ot oy J
3)
Energy equation:
0 k
—(ph)+V - (pVh) =V - | —Vh |+ Sh. (4)
ot Cp
Species conservation:
0
< (pC) + V- (pVC) = V- (pDVe) + 5., (5)

where p is the mixture density, y, is the liquid viscosity,
cp 1s the specific heat of the solid phase, V' is the velocity
vector whose components are u and v in the present
problem, S,,S,, Sz, Sh,S., are the source terms and will
be given in a subsequent section. The variables u, v, h, C
are the mixture velocity, enthalpy and concentration,
respectively, and defined as

u = fus + fouy, (6)
C = f.Cs + f,Cy, (7
h = fshs + fohy, (8)

where f; and f; represent the mass fraction of solid and
liquid phases, respectively, which must sum to unity in
the system, thus

S+ fe=1 ©)

2.1. Source terms

Since the continuum equations are valid over the
entire solidification regions, the specific nature of the
three regions are accounted for through the source
terms.

Sp represents the thermal and solutal buoyancy
sources expressed as

S/; = ngﬁT(T - Tref) + ﬂS(C[ - Cref)J7 (10)

where fr and fig are the thermal and solutal expansion
coeflicients, respectively, Ty is the reference temperature
and C,r is the reference concentration.

Sh represents the release of latent heat during the
phase change. Assuming the specific heat is independent
of temperature and composition [12], S, can be ex-
pressed as

L of Ac,

o
Sh=— EE‘FP . &(fsTL (11)
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where L is the latent heat of fusion and
Acy, = cpr — cps, (12)

where ¢, and ¢y, are the specific heats of the liquid and
solid phases, respectively.

S. represents the solute enrichment or depletion at
the mushy region due to the difference in the solubility of
solute in the liquid and solid phases, given as [9]

S.=V-[pfiDV(C, — C)] = V- [pu(C, — C)]. (13)

S, and S, represent the momentum source terms, which
account for the permeability of the mushy region. Fol-
lowing Ilegbusi and Mat [18], the mushy region is as-
sumed to be a non-Newtonian fluid below a critical solid
fraction (coherency point) and a porous region above
this threshold. The value of the critical solid fraction is
chosen based on the experimental results of Amberg et
al. [15] on the coherency point at which a solid skeleton
begins to form in the solidifying system. This value was
found to vary between 9% and 30% solid fraction de-
pending on the alloy system. Since this value is not
available for the NH4;Cl-H,O system considered here,
the coherency point has been chosen to be at the upper
limit of Arnberg’s data, i.e., f; = 0.3. This may be con-
sidered realistic, being closer to the equivalent packing
density of 0.54 for perfectly spherical solid particles. The
mushy region is treated as a power-law fluid below
fs = 0.3 and the viscosity is calculated from the follow-
ing relation [19]:

n—1

“:’"‘%(A :4)' (14)

in which A : A represents the dyadic product of defor-
mation rate tensor, expressed as

1 u\? w2 u o\’
EA.A2((5) + (@) )-ﬁ- (a—l-@) , (15)

where m and n are empirical constants given by [18]

m = exp(9.783f; + 1.435), (16)
n=0.105+ 0.41f. (17)
Above the coherency point, the mushy region is assumed
to obey the Darcy law for a porous medium. Thus the
source terms S, and S, in the momentum equations (Egs.
(2) and (3)) can be expressed as

S = KH?u/p, (18)
S, = Kiv/p, (19)

where K is the permeability of the mushy region calcu-
lated using the Carmen—Kozeny relation [20]

_ £
K_Ko(l el (20)

Je=1

where K is a coefficient that depends on the morphology
and alloy composition.

2.2. Thermodynamic relations

The local mass fraction, liquid and solid concentra-
tion are calculated assuming local thermodynamic
equilibrium in the system. Neglecting curvature on the
solidus and liquidus curves, the liquid and solid mass
fraction can be expressed as

1 T_Tiiq
l—ky T—Tp’

1)

where Ty, is the melting temperature of pure NH,Cl, and
Tiiq is the liquidus temperature calculated from

C
Tiiq :Tm+(Te_Tm)E (23)
Assuming local thermodynamic equilibrium, solid and
liquid temperatures at the solid-liquid interface must
satisfy the relation

L=T,=T. (24)

Phase compositions are linked to the liquid faction and
mixture concentration, thus

k,C
CS:1+(1—/g)(kp—1)’ (25)
C

T (- f)ky - 1)

where k;, is the partition ratio.

C

(26)

2.3. Initial and boundary conditions

The superheated fluid is initially motionless and has a
uniform temperature 7, and concentration Cj,. The
initial conditions can thus be expressed mathematically
as

t=0 u=v=0 C=Cn T="Th. (27)

Solidification is induced by keeping the left and right
walls at constant temperatures, Tho and Tooq(< Trn), re-
spectively, while adiabatic conditions are maintained
on the other walls. The walls are assumed to be imper-
meable and the no-slip condition is imposed. These
boundary conditions can be expressed mathematically as

oC

x=0. u=v=0, T=T,ua, a—ov (28)
oC

=L =p= T =Thet, —— =0, 2

X u=v=0, hoty 55 0 (29)
or oC

y70 u—Ufo, a—y—o, a—y—(), (30)
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Table 1
Thermophysical properties of NH4Cl-H,O and data used in the computations
Solid Liquid

Density (kg/m?) 1078 1078
Specific heat (J/kg K) 1870 3249
Thermal conductivity (W/m K) 0.393 0.468
Diffusion coefficient (m?/s) - 48E -5
Viscosity (kg/m s) - 1.3E-3
Latent heat of fusion (J/kg) - 3.138E — 4
Thermal expansion coefficient (K™ - 3.032E — 4
Solutal expansion coefficient - 0.257
Eutectic temperature (K) 257.75
Eutectic composition 0.803
Equilibrium partition ratio 0.3
Width of cavity (m) 0.036
Height of cavity (m) 0.144
T (K) 243
Thot X) 243
Teold (K) 213
G 0.69

oL u—v— or _, %€_, (31) tions. Another important issue is the method of calcu-

Oy Ty ' lating the temperature since it explicitly depends on the

The thermophysical properties of NH,Cl-H,O solution
and values of the data used in the calculations are given
in Table 1.

2.4. Computational details

The governing equations are solved numerically with
a fully implicit, finite-domain scheme embodied in the
PHOENICS computer code [21]. The solution pro-
cedure involves integration of the differential equations
over finite control volumes into which the system has
been discretized, transforming them into a general al-
gebraic form

ap¥p = Zaﬂ’k+aoﬂ”ﬁ’,+5w, (32)

where ¥ represents the generic variables solved
(u,v,h,c), ¥, is the unknown nodal value, Tg represents
¥, at an earlier time, subscript k designates the neigh-
boring nodes linking node p, a represents the combined
advection and diffusion coefficients, and Sy is a com-
ponent of the linearized source term.

The code employs a staggered grid arrangement in
which velocities are located at the faces of the control
volume. The velocity—pressure coupling is handled by a
SIMPLE type algorithm [22].

Discretizing the convection/diffusion source terms in
the species conservation equation requires special at-
tention to ensure the total amount of species is con-
served throughout the solidification process. This is
achieved using methodology proposed by Bennon and
Incropera [9] in which the convective and diffusive link
coefficients are employed in the finite difference equa-

solid fraction and concentration. In this study a solid
fraction-temperature updating scheme [20] is used.

A 40 x 40 non-uniform spatial grid system is em-
ployed in the computations following a systematic grid
independence test. A typical result is presented in Fig. 2,
showing the temperature profile calculated using
10 x 10, 30 x 30, 40 x 40 and 50 x 50 grid systems at
y=h/2 after 5 min of solidification. It is seen that
changes in temperature profile is not significant beyond
the 40 x 40 grid system. A similar test was performed to
choose the temporal step of 0.5 s. A constant viscosity is
assumed in the first sweep of the first timestep to obtain
a preliminary deformation rate and viscosity. The cal-
culations are then repeated until a fully converged result
is obtained. The results are considered fully converged
when changes in the temperature, velocities and con-

320 T T T T T T T

300

T(K)

280

260

240 1 | 1 !
0.00 0.01 0.02

1
0.03

x(m)

Fig. 2. Grid independence test (7' at y = H/2, t = 5 min).



284 M.D. Mat, O.J. llegbusi | International Journal of Heat and Mass Transfer 45 (2002) 279-289

centration fall below 107°. The computations are per- resentative time spans of t=1,5,8 and 15 min, re-
formed on a Pentium II PC and 1 min of real time spectively. The results after 15 min are not included
simulation takes about 30 min of CPU time. because a steady-state condition has been reached in the

numerical sense.
Fig. 3(a) shows the flow field, temperature and solute

3. Results distribution, one minute after the solidification is in-

itiated. The flow field is illustrated in terms of the velocity

The evolution of the solidification of Aqueous vectors and streamlines. The isotherms and isoconcen-

NH4CI-H,O alloy is presented in Fig. 3 at four rep- tration curves are plotted with 10 equal increments
Vo=3.39x107m/s  ma=1.95x107 m%/s Cimin=0.69

Vou=24x10%m/s  ma=9.3x107 m%/s Cimin=0.691

(b)

Fig. 3. Predicted velocity field, streamlines, isotherms and isoconcentrations at: (a) =1 min; (b) t=35 min; (c) =8 min;
(d) =15 min.
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Vi =1.33x107m/s  Yinax=5.6x10 m’/s

Cimin=0.695

k

(d)

Fig. 3 (continued)

between the maximum and minimum values of the
temperatures and concentrations in the cavity. The
mushy zone is marked on the velocity vectors between
solid mass fraction values of 0.01 and 0.99. It is seen that
two circulation patterns of opposite directions are
formed in the cavity. A thermally induced circulation
due to the temperature gradient between the hot and
cold walls rotates counter clockwise and fills most of the

cavity. Another circulation develops due to the con-
centration gradient in the mushy region and rotates in
the clockwise direction.

The isoconcentration lines show that excess water
that is rejected from the mushy region due to the dif-
ference in solubility of water in the solid and liquid
phases rises to the top of the cavity and forms a water-
rich layer. The temperature of this layer also decreases
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Uinax=0.23Ns/m*

[—

—

|

2x10” Ns/m?

| —

0.115 Ns/m*

L —

(@)

Ymax=6.7 1/5°
1
0.1 1/s*
|
1.51/s
|
il 42 1/s
|
«—
(b)

Fig. 4. Predicted viscosity (a) and deformation rate (b) distri-
bution in the cavity at t = 1 min.

as a result of the lower temperature of this rejected
water. The solute concentration in the liquid phase re-
mains uniform at the initial value.

The solidification pattern at ¢t = 5 s is shown in Fig.
3(b). The flow is again similar to that for t = 1 s in Fig.
3(a). The water rejected from the mushy region contin-
ually accumulates at the top of the cavity and therefore a
water-rich layer grows downwards. A small thermally
induced circulation develops in this layer and a solutal
buoyancy induced flow is apparent between the upper
and lower thermally induced circulations. The effect of
thermal buoyancy is quite evident in this figure. Specif-
ically, the flow generated by thermal buoyancy distorts
the isotherms close to the bottom wall. The isotherms in
the solid region are straight lines and consistent with
pure conduction. It is interesting that concentration
gradients, unlike thermal gradients, occur only at the
top of the cavity, indicating that solutal buoyancy is
most effective in the mushy region. The size of the mushy
region also increases, indicating a progression of sol-
idification in the system. The high water concentration
at the top of the cavity results in a decrease in the lig-
uidus temperature and local remelting. Thus the so-
lidification front does not advance significantly in this
region. The liquidus front exhibits an irregular behavior
and a pocket-like structure forms in the mushy region,
representing the preferred flow passage for interdendritic
fluid. This type of structure was also observed in the
experimental works of Szekely and Jassal [23] and Yoo
and Viskanta [12].

liquidus

Solidus

liquidus

Solidus

liquidus

= = = Christenson and Incropera [10]
= = = Christenson et al. [11]
Present study

Fig. 5. Comparison of predicted structure of mushy region with experimental results of Christenson and Incropera [10] and numerical
results of Christenson et al. [11]: (a) # = 3 min; (b) # =11 min; (c) = 15 min.
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,,,,,,, Christenson and Incropera [10]
—_— Christenson et al. [11]
Present study

1 x=2.2 mm.
2 x=6.6 mm.
3 x=10.9 mm.

4 x=17.5 mm.
5 x=26.2 mm.

Fig. 6. Comparison

(b) y =90 mm.
T T T 1 1 T T
07
06 |- i
05 | _
&
04 | _
03 | |
02 1 1 I I I 1 1

0.00 0.01 0.02 0.03

x(m)

Fig. 7. Final macrosegregation along the cavity at y = H/2.

Solute enriched top layer continually grows at a later
stage of solidification (+ = 8 min). The mushy region is
wider especially at the lower section of the cavity. This
may be attributed to thermal convection which drives the
colder fluid in a counter-clockwise direction at the bottom
of the cavity. Another contributing factor is the settling of
free-floating grains in the mushy region. This important
phenomenon occurring during the alloy solidification is
adequately captured by the present model.

At t =15 min, the circulation at the top of the cavity
has grown into a thermally induced circulation, forming
a single counter-clockwise circulation. The isotherms

of predicted temperature histories along the x axis with experimental and numerical data: (a) y = 45 mm;

and isoconcentration lines show that this single circu-
lation homogenizes the temperature and concentration
fields in the cavity. The numerical results do not change
significantly beyond ¢ = 15 min, indicating that steady
state has been attained. Thus, subsequent results are not
presented here for brevity.

Fig. 4 shows the distribution of deformation rate in
the cavity at t = 1 min. The field is divided into 10 equal
intervals. It is seen that the deformation rate is highest
close to the mushy region and smallest at the top and
lower sections of the cavity. The higher deformation in
front of the liquidus line indicates that the dendrite arms
in this vicinity will be subjected to large shear that may
result in their breakup. The low deformation regions
represent possible regions of accumulation of broken
dendrite arms. The corresponding viscosity isopleths at
t =5 min are shown in Fig. 4(b). The viscosity of the
mushy zone is low in the regions subjected to high de-
formation rates. This result is consistent with the as-
sumed shear thinning behavior of the mushy zone.

The predicted extent of the mushy region is com-
pared with the experimental results of Christenson and
Incropera [10] and numerical results of Christenson et al.
[11] in Fig. 5. The mushy region is demarcated between
solid fraction values of 0.01 (liquidus line) and 0.99
(solidus line). Both predictions are in good agreement
with the experimental results at 1 =3 min. However,
Christenson et al. [11] slightly overestimate the liquidus
front at this stage. The present model predicts an ir-
regular interface while the other two results [10,11] ex-



288 M.D. Mat, O.J. llegbusi | International Journal of Heat and Mass Transfer 45 (2002) 279-289

hibit quite smooth interfaces. The experimental results
[10] may be attributed to the smoothing of the data.

Fig. 5(b) shows that the three results agree very well
at t =11 min but the solidus front is slightly underes-
timated in the numerical results. Both numerical results
capture the irregularities (i.e. flow channels) on the
liquidus line, but the predicted locations of channels
differ. The difference between the two numerical results
is most evident at ¢+ = 15 min. It is seen that the present
study captures the solidus line better than Christenson
et al. [11]. The liquidus front is overpredicted by the
present model at the bottom of the cavity. This is con-
sistent with the experimental result of Yoo and Viskanta
[12] and was associated with the settling of free grains
and broken dendrite arms in the mushy region. Such
trend was not detected in the experiment of Christenson
and Incropera [10], perhaps due to an error in their
experimental technique. Furthermore, the difference in
the numerical results is a result of the allowance in the
present model for motion of broken dendrites and free
grains in the mushy region.

The predicted temperature histories are compared
with the experimental data of Christenson and Incrop-
era [10] and numerical results of Christenson et al. [11] in
Fig. 6. The temperature is measured along the x-axis at
two heights of y =45 mm and y = 90 mm where the
most important phenomena occur during the solidifica-
tion. Both numerical results are generally in agreement
with the experimental data.

Fig. 7 shows the predicted mixture concentration
with distance from the cooled solid surface at a late stage
of solidification (# = 15 min). This result clearly shows
the existence of a diffusion boundary layer on the cooled
wall resulting from the allowance for solute diffusion in
the liquid phase in our model. The mechanism of for-
mation this boundary layer was first reported by
Schneider and Beckermann [24] and discussed in detail
by Thevik and Mo [25] and recently by Kuznetsov [26].
It was attributed to solute rejection from interdendritic
fluid due to the positive temperature gradient adjacent
to a cooled wall. Since the wall is impermeable, this
depleted solute cannot be compensated and a thin dif-
fusion layer forms there as shown in Fig. 7.

4. Conclusion

The solidification of an aqueous ammonium chloride
solution in a two-dimensional cavity has been numeri-
cally studied. A continuum mixture mathematical model
is employed, which is valid in the solid, liquid and mushy
regions. The mushy region is considered a non-New-
tonian fluid below a critical solid fraction and a porous
medium thereafter. This critical solid fraction is chosen
at the coherency point where a solid skeleton begins to
form in the mushy region.

The solidification of a hypereutectic binary alloy is
characterized by several factors. These factors include
solute rejection in the mushy region due to the different
solubities of water in the solid and liquid phases, an
opposing buoyancy flow that is generated by concen-
tration gradient and thermal gradient in the cavity, re-
melting, formation, growth and break-up of solute-rich
layer at the top of the cavity and irregular liquidus front.

The predicted deformation rate is high near the lig-
uidus front in the mushy region and this may cause a
break-up of dendrite arms. The viscosity is relatively
high in the quiescent regions. The present model predicts
a smoother liquidus interface at the late stage of solidi-
fication than a numerical study that is based on a fully
porous medium model. In addition, a larger mushy re-
gion is predicted at the bottom of the cavity by the
present model compared to the conventional model.
This is due to the allowance for motion of free floating
particles and broken dendrites in the former situation.

Although the rheology of the mushy region has been
adapted from studies on alloy systems for which exper-
imental data exist, the present model has demonstrated
the potential to capture the main features of alloy
solidification in general. The results provide insight into
the physics of such problems over existing models that
are based on fully porous media. However, detailed
experimental studies are still required to establish the
model constants. It is also desirable to apply the model
to other alloy systems to establish its universality.
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